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Abstract: Dipeptidyl peptidase IV (DPP-IV) inhibition has the
potential to become a valuable therapy for type 2 diabetes.
We report the first use of solid-phase synthesis in the discovery
of a new DPP-IV inhibitor class and a solution-phase synthesis
that is practical up to the multikilogram scale. One compound,
NVP-DPP728 (2), is profiled as a potent, selective, and short-
acting DPP-IV inhibitor that has excellent oral bioavailability
and potent antihyperglycemic activity.

Introduction. Dipeptidyl peptidase IV (DPP-IV, EC
3.4.14.5) is a ubiquitous yet highly specific serine
protease that cleaves N-terminal dipeptides from polypep-
tides with L-proline or L-alanine at the penultimate
position.1 The biological activities of many circulating
regulatory peptides are altered or abolished by the
action of DPP-IV in vitro.2 However, in part because of
the multiplicity of enzymes exhibiting DPP-IV-like
activity,3 the in vivo role of DPP-IV in mediating the
cleavage and determining the action of most substrates
has yet to be established. One exception is with the
incretin known as glucagon-like peptide-1 (GLP-1), the
most potent insulinotropic hormone known.4 Numerous
studies with DPP-IV5 and DPP-IV inhibitors6-9 support
a principal role of DPP-IV in the inactivation of GLP-1
in vivo. More importantly, the contribution of DPP-IV
catalytic activity to blood glucose control through GLP-1
inactivation has recently been confirmed.10 Because of
multiple benefits of GLP-1 augmentation, DPP-IV in-
hibition has been recognized as a mechanistic approach
of potential value in the treatment of type 2 diabetes.11

By extending the duration of action of GLP-1, one would
stimulate insulin secretion, inhibit glucagon release,12

and slow gastric emptying;13 each a benefit in the
control of glucose homeostasis. DPP-IV inhibition,
through the preservation of active GLP-1 levels, has the
potential to slow or even prevent the progression of type
2 diabetes by stimulating insulin gene expression and
biosynthesis, increasing the expression of the â-cell’s

glucose-sensing mechanism and promoting genes in-
volved in the differentiation (neogenesis) of â-cells.14

GLP-1 may play a role in acutely suppressing appetite
in humans15 and may play a role in mediating periph-
eral glucose uptake.16 Since the blood glucose lowering
effects of GLP-1 are dependent on elevated blood glucose
and abate as glucose levels return to normal, the
incidence of hypoglycemia during treatment with a
DPP-IV inhibitor is expected to be very low.17

With few exceptions,18-20 DPP-IV inhibitors resemble
the P2-P1 dipeptidyl substrate cleavage product, where
the P-1 site contains a proline mimic.21 A straightfor-
ward replacement of the normally cleaved P-1 substrate
amide (R in Chart 1) with an electrophile provides both
irreversible (R ) P(O)(OPh)2, CO-NH-O-COR′) and
reversible (R ) B(OH)2, H, CN) inhibitors.22 Low nano-
molar inhibition and chemical stability adequate for oral
administration are obtained only with nitrile replace-
ment of a substrate P-1 site amide (Xaa-(2S)-cyanopyr-
rolidines23-25 and Xaa-(4R)-cyanothiazolidines26). Cyclo-
hexylglycine-(2S)-cyanopyrrolidine 1 is one of the more
potent, selective, and stable representatives of this
nitrile class (Ki of 1.4 nM, >1000-fold selectivity over
closely related peptidases, and t1/2 stability of >48 h at
pH 7.4).24

Until recently, a constant in DPP-IV inhibitor design
had been an L-amino acid with a protonatable N-
terminal primary amine in the P-2 site. Noticing that
N-methylglycine was recognized in the substrate P-2
site,21a we were curious to investigate whether structur-
ally more complicated N-substituted glycines would be
tolerated at the P-2 site. We were gratified to find that
a number of diverse P-2 site N-substituted glycines
provided potent inhibition when combined with a (2S)-
cyanopyrrolidide in the P-1 site (8 in Scheme 1).27

Intensive evaluation of this class28 has led to the
selection of the slow binding inhibitor 2 (NVP-DPP728)29

as a clinical development candidate for type 2 diabetes.
Herein, a tandem resin-solution parallel synthesis that
led to the discovery of the P-2 site of 2 is described along
with a solution-based method for multigram synthesis.
Additionally, we report on the pharmacologic profile of
this selective DPP-IV inhibitor, which exhibits excellent
potency and oral bioavailability.

Chemistry. The preparation of a library of N-sub-
stituted 2-(S)-pyrrolidinecarbonitriles 8 has been carried
out in a tandem five-step solid-phase and three step
solution-phase sequence starting from commercially
available Fmoc-protected Rink amide AM resin 4 as
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described in Scheme 1.30 Successive deprotection of 4
with piperidine, 1,3-diisopropylcarbodiimide (DIC) cou-
pling with Fmoc-protected proline, deprotection with
piperidine, and finally DIC coupling with bromoacetic
acid provided the resin-bound R-bromoacetyl prolin-
amide 5. Analogous to Zuckermann’s synthesis for solid-
phase peptoid libraries,31 5 was treated with a diverse
array of over 200 primary aliphatic amines to provide
a library of discreet, resin-bound N-substituted glycine-
2-(S)-pyrrolidinecarboxamides (6). Trifluoroacetic acid
(TFA) resin cleavage of 6 followed by amide dehydration
with trifluoroacetic anhydride (TFAA) afforded N-sub-
stituted N-trifluoroacetylated-2-(S)-pyrrolidinecarboni-
triles 7. Deacetylation of 7 with ammonia in methanol
provided the product library of N-substituted 2-(S)-
pyrrolidinecarbonitriles (8) in a 1 to 1 mixture with
trifluoroacetamide.32 The commercially available 2-(2-
aminoethylamino)-5-nitropyridine (12a) provided resin-
derived 3 (IC50 of 20 ( 3 nM in the DPP-IV Caco-2
assay) as one of the few low nanomolar DPP-IV inhibi-
tors from this library effort. Compound 3 served as our
starting point for the structure-activity relationship
(SAR) effort that led to the title compound 2.28 A
solution-based preparation of 2 and 3 had been carried
out in three steps beginning with L-prolinamide (9) as
shown in Scheme 2. Coupling of 9 with either bromo-

acetyl bromide or chloroacetyl chloride provided 10a or
10b, respectively.

Amide dehydration of 10a and 10b with trifluoroace-
tic anhydride produced 11a and 11b as solids that were
stable for months at room temperature. Coupling of
bromide 11a with an excess of 12a provided 3, which
was isolated as the dihydrochloride salt. The coupling
of commercially available 5-cyano-2-chloropyridine with
excess ethylenediamine provided 12b. Reaction of 11b
with excess 12b provided 2, which was isolated as either
the mono- or the dihydrochloride salt. The monohydro-
chloride 2 possessed a solubility of >100 mg/mL in
distilled water and crystallized as a hemihydrate trans-
amide rotomer with (S) chirality, as evidenced by the
X-ray crystallographic analysis.33 In solution, 2 was a
mixture of cis- and trans-amide rotomers according to
NMR. With minor modifications, the present solution
synthesis has provided 2 on the 100 kg scale.

Results and Discussion. Compounds 1-3 were
evaluated in vitro for their inhibition of DPP-IV ex-
tracted from Caco2 cells as well as from rat and human
plasma (Table 1). Since under neutral and basic aqueous
conditions the P-2 site amine can nucleophilically attack
the carbon of the pyrrolidide-nitrile to form an inactive
cyclic amidine,28 the stability of 2 was examined under
assay conditions. Under the assay conditions employed,
this intramolecular cyclization was slow (t1/2 > 2 days),
resulting in less than 1% of 2 converting during the time
frame of the experiment. As shown in Table 1, com-
pound 2 potently inhibited both human and rat plasma
DPP-IV and human epithelial cell-surface DPP-IV
(IC50 ) 7, 6, and 22 nM, respectively). Also, 2 was highly
selective for DPP-IV over closely related peptidases,
post-proline-cleaving enzyme (PPCE) and DPP-II34 (Table
1). In addition, the in vitro specificity of 2 was profiled
in over 100 receptor and enzyme assays and no signifi-
cant binding was observed (10 µM).

In vivo evaluation of 2 in rat9 and human35 has
supported the connection between DPP-IV inhibition
and an improvement in oral glucose tolerance through
an increase in active GLP-1 levels. We also found that
2 rapidly and effectively improved the metabolic profile
in nonhuman primates. Oral administration of 2 (1
µmol/kg) significantly reduced plasma glucose levels
(38% reduction in the 0-90 min glucose AUC, p < 0.05)
in cynomologus monkey compared to the control during
an oral glucose tolerance test (OGTT) (Figure 1). Ad-
ditionally, peak glucose levels are significantly reduced
in treated animals compared to control (98 ( 4 vs 88 (
3 mg/dL, p < 0.05). When administered 30 min before
an OGTT study, 2 maximally inhibited plasma DPP-IV
activity (89%) 25 min postdose and provided a g70%
DPP-IV inhibition throughout the study.

Pharmacokinetic evaluation of 2 was performed in
male Sprague-Dawley rats and male cynomolgus mon-

Scheme 1a

a Reagents: (i) 20% piperidine/DMF; (ii) Fmoc-proline, DIC,
DMF; (iii) 20% piperidine/DMF; (iv) BrCH2COOH, DIC, DMF; (v)
RNH2, DMSO; (vi) 95% TFA/H2O; (vii) TFAA, THF; (viii) NH3/
MeOH.

Scheme 2a

a Reagents: (i) BrCH2COBr, Et3N, CH2Cl2, and DMAP for 10a
while ClCH2COCl, K2CO3, and THF for 10b; (ii) 10a for 11a and
10b for 11b, TFAA, CH2Cl2; (iii) 11a, THF, 12a for 3 and 11b,
THF, 12b for 2; (iv) excess HCl/THF for di-HCl of 2 and di-HCl if
3 and 1 equiv of ethanolic HCl for mono-HCl of 2.

Table 1. DPP-IV Inhibition and Selectivity Assaysa

Caco-2b
rat

plasmab
human
plasmab PPCEc DPP-IId

1 2.0 ( 0.3 2.8 ( 0.2 3.2 ( 0.19 41 000 ( 14 000 102 000 ( 20 000
2 22.0 ( 2.0 6.0 ( 1.0 7.0 ( 1.7 190 000 ( 46 000 110 000 ( 5800
3 8.0 ( 3.0 17 ( 0.3 8.7 ( 0.8 16 000 ( 1200 12 000 ( 580

a Values are IC50 (nM) expressed as the mean ( SD of three
independent determinations. Procedures are described in Sup-
porting Information. b Primary DPP-IV assays. c Extract from
human erythrocytes. d Extract from bovine kidney homogenate.
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keys. After an oral dose of 10 µmol/kg, Cmax was 3.65
µM in rat and 7.56 µM in monkey. Absolute bioavail-
ability was high in both rat and monkey at g74%. The
steady-state volumes of distribution are similar in rat
(670 mL/kg) and monkey (841 mL/kg), suggesting that
2 is distributed principally in the body fluids. Clearance
of 2 from plasma is moderate at about 28 ( 1.5 mL
min-1 kg-1 in the rat and 21.9 ( 3.1 mL min-1 kg-1 in
the monkey. After an oral dose in monkey of 1 µmol/kg,
2 provided a half-life of 0.85 h and inhibited plasma
DPP-IV activity by >50% for 4 h. A 100 mg oral dose of
2 in humans provided a similar half-live of 0.85 h, a
>80% inhibition of plasma DPP-IV activity for ∼4 h, a
significant increase in active GLP-1 levels, and an
improvement in metabolic control.35 As a reversible
DPP-IV inhibitor possessing a relatively short half-life,
2 might most effectively be taken with a meal when
GLP-1 secretion is at its maximal rate.

In summary, we report here the use of combined solid-
phase and solution-phase chemistry to discover a potent,
selective, and short-duration DPP-IV inhibitor that also
has excellent oral bioavailability. The favorable phar-
macokinetic profile for NVP-DPP728 (2) led to the
selection of this compound for further study in a clinical
setting for type 2 diabetes.35 Profiling of this new class
of DPP-IV inhibitors is under study and will be reported
in due course.
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